GENERAL RELATIVISTIC DESCRIPTION OF OBSERVED GALAXY POWER SPECTRUM

JAIYUL YOO Institute for Theoretical Physics, University of Zürich

Michigan Center for Theoretical Physics, May, 14, 2011

CONTENTS
I. Why?
I. How?
I. So What?

I. MOTIVATION

- theoretical inconsistency in the standard method
- is Newtonian description *valid?*
 - larger volume and higher redshift
 - primordial non-Gaussianity on large scales
- it is "general relativity!"

GR Effects on Horizon

- which gauge choice? (there are infinitely many gauges)
- order one effects on horizon scale!

GR Effects on Horizon

- which gauge choice? (there are infinitely many gauges)
- order one effects on horizon scale!

GR Effects on Horizon

- which *gauge choice*?(there are *infinitely* many gauges)
- order one effects on horizon scale!

II. FORMALISM

- model *observables*, not *unobservable* quantities!
- observables: (physical)
 - observed redshift z_{obs} , position $\hat{n} = (\theta, \phi)$
- *unobservables*: (gauge-dependent) • redshift z, angular position $\hat{s} = \hat{n} - (\delta\theta, \delta\phi)$
- photon geodesic equation $1 + z_{obs} = (1 + z) \left[1 + V(z) - V(0) - \psi(z) + \psi(0) - \int_{0}^{r} dr' (\dot{\psi} - \dot{\phi}) \right].$ $(\delta r, \ \delta \theta, \ \delta \phi)$

Effects on Galaxies

- construct a galaxy fluctuation field:
 - total number of observed galaxies $N_{
 m tot}$
 - observed volume $dV_{\rm obs}$ given $(z_{\rm obs}, \hat{n})$
 - fluctuation field $\delta_{obs} = \frac{n_{obs}}{\langle n_{obs} \rangle} 1$
- relation to *physical* number density:
 - number conservation $N_{\text{tot}} = n_{\text{phy}} dV_{\text{phy}} = n_{\text{obs}} dV_{\text{obs}}$
 - observed number density $n_{\rm obs} = n_{\rm phy} \frac{dV_{\rm phy}}{dV_{\rm obs}}$
 - volume & source effects

Galaxy Fluctuation Field

- standard Newtonian version:
- general relativistic version:

$$\delta_g = b \ m_{\delta z} + \alpha_{\chi} + 2\varphi_{\chi} + V - C_{\alpha\beta}e^{\alpha}e^{\beta} + 3 \ \delta z_{\chi} + 2\frac{\delta\mathcal{R}}{r} - H\frac{\partial}{\partial z}\left(\frac{\delta z_{\chi}}{\mathcal{H}}\right)$$
$$-5p \ \delta\mathcal{D}_L - 2\mathcal{K}$$

Yoo, PRD, 2010

Galaxy Fluctuation Field

- standard Newtonian version: $\delta_g = b \ \delta_m \frac{1+z}{H} \frac{\partial V}{\partial r}$
- general relativistic version:

 $\delta_g = b \ m_{\delta z} + \alpha_{\chi} + 2\varphi_{\chi} + V - C_{\alpha\beta}e^{\alpha}e^{\beta} + 3 \ \delta z_{\chi} + 2\frac{\delta\mathcal{R}}{r} - H\frac{\partial}{\partial z}\left(\frac{\delta z_{\chi}}{\mathcal{H}}\right)$ $-5p \ \delta\mathcal{D}_L - 2\mathcal{K}$

it can be computed in *any gauges!*

Yoo, Fitzpatrick, Zaldarriaga, PRD, 2009 Yoo, PRD, 2010

III. RESULTS

- theoretical predictions:
 - new cal. (*correct*)
 - standard (*incorrect*)
- underestimate the observed signals by a factor two at low multipoles
- 3.7-σ detection, but observed signal is larger by 2 at low multipoles (Ho et al. PRD, 2008)

III. RESULTS

- theoretical predictions:
 - new cal. (*correct*)
 - standard (*incorrect*)
- underestimate the observed signals by a factor two at low multipoles
- 3.7-σ detection, but observed signal is larger by 2 at low multipoles (Ho et al. PRD, 2008)

Galaxy Power Spectrum

- matter fluctuation: $\rho_m = \bar{\rho}_m(t)[1 + \delta_m] = \bar{\rho}_m(z_{obs})[1 + m_{\delta}]$
 - gauge-dependent δ_m $1+z_{obs} = (1+z)(1+\delta z)$
 - time slicing (coordinate vs observed redshift)
 - gauge-invariant, observable $m_{\delta} = \delta_m 3 \ \delta z$
 - Bardeen's gauge-invariant $\epsilon_m, \epsilon_g \quad \epsilon_m \neq \epsilon_g \neq m_\delta$
 - matter rest frame & zero-shear frame
- gauge-invariance is a necessary but not a sufficient condition for observable quantities

"Real-Space" Matter Power

- no longer isotropic, neither $P_m^S(k)$, nor $P_m^N(k)$
- real-space matter power spectrum $P_{m_{\delta}}(k, \mu_k)$

Observed Galaxy Power Spectrum

- largely similar to $b^2 P_{m_{\delta}}(k, \mu_k)$ (green)
- *unique signature* on large scales (ring a bell?)

Systematic Errors

- Baryonic Oscillation Spectroscopic Survey (BOSS)
- can we do more in *current surveys?*

Systematic Errors

- Baryonic Oscillation Spectroscopic Survey (BOSS)
- can we do more in *current surveys?*

Systematic Errors

- Baryonic Oscillation Spectroscopic Survey (BOSS)
- can we do more in *current surveys?*
 - YES, talk to Nico Hamaus (in preparation)

False Detection

- *misinterpretation* as detection of non-Gaussianity
 - depending on f_{NL}, systematic errors can be large
 - talk to Tobias Baldauf (in preparation)

GENERAL RELATIVISTIC DESCRIPTION OF OBSERVED GALAXY POWER SPECTRUM

JAIYUL YOO Institute for Theoretical Physics, University of Zürich

Michigan Center for Theoretical Physics, May, 14, 2011